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We consider flows of an ideal incompressible fluid whose velocities in a cylindrical co- 
ordinate system (r, ~ , z) have the form (0, V, W). We assume that V = V(r), W = W(r). We 
investigate the stability of the latter in a linear approximation. Such flows are idealiza- 
tions of such natural phenomena as tornadoes and dust devils [i, 2]. Their investigation is 
important for an understanding of the role of instability in vortex breakdown [3]. Classical 
Couette flow between cylinders is also of this type. 

At present there are few general theoretical results relating to the linear stability 
of rotating flows to nonaxisymmetric disturbances. This question was dealt with by Howard 
et al. [4], who obtained a representation of the normal oscillations in terms of a single 
equation and[ introduced an analog of the Richardson number. Leibovich [5] investigated the 
sufficient conditions for stability of such flows to axisymmetric disturbances, in [6, 7] 
stability to nonaxisymmetric disturbances was investigated numerically. A Poiseui!le flow 
in a rotating tube was examined in [6], and a linear vortex in the wake of a wing in [7]. 
Several general results for flows with round streamlines (W = 0) were obtained in [8, 9], 
where the similarity of such flows to plane-parallel stratified flows was investigated. Ques- 
tions of the stability of stratified flows are dealt with in [i0, 11]. 

In this paper we obtain some general results relating to the stability of rotating flows 
to nonaxisymmetric disturbances. An estimate of the complex part of the disturbance spectrum 
is given (circle theorem). The problem with initial data is considered, and a rule for selec- 
tion of the solution branch at the special point is formulated. The similarity and differ- 
ence of rotating flows to flows with round streamlines and stratified flows are indicated. 

i. Let (u, v, w) be the complex amplitudes of the velocity disturbance components cor- 
responding t o  coordinates (r, ~, z). Let the disturbances have the form of normal waves; 
u(r, ~, z, t) - Re{u(r) exp [i(kz~-m~--~t)]} , etc. In [4] the linearized equations of motion 
and continuity were reduced to a single equation. For q = ur the latter can be written in 
the form 

I 

w h e r e  p = t / ( m  2 -q- k~'r2); [5 = - - p ' ; p ;  (r = V/r -}- k W / m  --  ~o/m; A(r) = (~P. + k~rW'/m --  r - -  k(rW')'/m)/r; 

G (r) = 2kV ( k ) mr---- ff ~ ~1" -- I'V' ; .Q == dV/dr ~ V/r. 

(Below we consider flows between cylinders of radii RI and R2.) Then to (i.i) we add the 
boundary conditions 

q = 0 w h e n  r = R1, R2. ( 1 . 2 )  

For proof of the circle theorem we convert Eq. (I.i). We put q = ~rf(r). After some 
algebra we obtain 

(pr3oV' )  ' + 2p , 'L ]  - -  (m ~ + k2r 2 - -  t ) p r o 7  - -  p ' , '~(M ~ - -  ( N  - -  c)~)f + 2pr2N'(N --  c)/ = 0, ( 1 . 3 )  

w h e r e  c = ~ , ' m ;  M - :  V/r; N = k W / m ;  L ---k2rV~/m ~. We p u t  Q = pr~lJ ']  2 - [ - 9 r ( m  z + k 2 r  2 -  1)[/] 2, 

QI = 2~r]/[ 2, Q2 .... p'rZ]][ ~ We multiply (1.3) by f*, then integrate from RI to R2, taking 
(1.2) into account. In the obtained equality we separate the imaginary and real parts: 

2 ic~{~O(M-~  N - - c , . ) d r - ~ - f O 2 ( N - - c , . ) d r - - t O , ~ r N ' d r }  .... O; (1.4) 
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,[ Q [(M + N -- c,) ~ -- c~] d," + S Q.z [(N -- c,.)" -- M 2 -  c~] dr - -  ~ Q~rA:' (N -- c,) dr -- ~ QxLdr = 0. <1.5) 

We put a = nfin (M + N -- rN'/2,. M/2 + N -- rN'/4, 31 + N),: b = max (M + N -- rN'/2, M/2 + N -- rN'/4, 
M + N ) .  

THEOREM. All the complex eigenvalues of Eq. (i.i) when m 2 > 1 satisfy the inequalities 

a < G <  b~ 

k 2 2 (b--at2 m a x [ V (  k 0]. 

Proof. Direct verification shows that for m 2 > 1 the inequality 

Q >~ Q1/> Q.z ~> 0 (1 .6)  

is fulfilled. We will prove the right-hand inequality in a < Cr < b. The left-hand one is 
proved in a similar way. We assume the opposite. Then, for (1.4), in view of (1.6), we have 
a chain of inequalities 

y O (cr-- M - -  N) dr + y O2 (cr --  N) dr -{" y - ~  rN'dr > 

Since ci~0 the last inequality contradicts (1.4). We make the the substitutions: 
N, = N-- (a +b)/2, r Then the form of (1.4), (1.5) is not altered, except 
that N and c will be replaced by N, and c,. Using (1.4) we convert (1.5) to the form 

Y Q [1 c,  I ~ - (M + N, )  21 dr + ~ Q2 (I ~, I ~ + M~ -- N~) dr -[- .f Q~ (rN'N,  + L) dr = O. (1.7) 

We prove the last inequality of the theorem. We assume the opposite. Then Ic,[ 2 > 
(M + N,) 2. In view of this and (1.6), for (1.7) we have the chain of inequalities 

Q [I ~,  10" - ( i  + N,) ~1 dr + S O~ (I c ,  I ~ + M ~ - -  N D  dr + 

S Q~ ( rN 'N,  + L) dr > ~ (Q1 - Q2) [] c, JZ- ( i  + N, )  2 -]- r i ' N ,  + LI dr + 

-- J~ Qz [2[ c, I ~ - ( i  + N,)  2 + M ~" -- N ~" , -[- r i ' N ,  + L] d r >  

>S(Q~-Q2)  Ic, l"-- i § g ,  -- -:2-) ~ v  -TQr + 

----Qr > O, § I~,12- N , +  =, ~7 ~ - T  ~ .~ 

which contradicts (1.7). 

2. The proved proposition allows us to consider the problem with initial data. Subse- 
quent results are obtained by methods similar to those in [5, 9-11]. Hence, the treatment 
will be brief with appropriate references. 

We put the disturbance in the form u(r, ~ z, t) = Re {u(r, t) exp [i(kz + m~)]}~ u(r~ O) = uo(r), 

etc. We put % =ru~ r), where u(p, r) ----~u(r, t)exp(--pt)dt is the Laplace transform of 
O 

From the linearized equations of motion and continuity we can obtain the function u(r, t). 
an equation for 

G (r) ] X 1 X~ (2.1) 
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Here the dash denotes differentiation with respect to r; ~ = V / r - ~ - k W / m - - ~ / m ;  X~ =--i. 
( ruo )" lm  - -  i (i/r  - -  ~) (ruo)'/m; X~ = 2 k V  ( k r ~ / m  - -  ~o)l(mr).  

We wi l l .  assume t h a t  t he  f u n c t i o n  V / r  + k~/m i s  m o n o t o n i c .  The r e s u l t s  can  be  e x t e n d e d  
to the case of a nonmonotonic function as in [ii]. Following [9-ii], we find the asymptotic 
form of the function u(r, t) when t + ~. The analog of the Richardson number in this case 

is the number [4, 8] 

j = . 2kV ( k ~ r / r a -  W')  

mr ~ [(F/r)' -~- kW']m] ~ " 

We put w(r) =]/i--4J and consider disturbances belonging to the continuous spectrum. 
When v>0, ~ ~=0, t-+oo we have u(r, t) ~ t v-• exp(--imUt), U =V/r2c~W/m. We note that, 
as distinct from [9-11], for any r, where V ~0, W' ~0, there are k/m such that J < 0, v>l. 
These values; of k/m correspond to the most rapidly increasing solutions of the continuous 
spectrum. Thus, we can always find k/m for which disturbances of the radial velocity compo- 
nent of the rotating flow grow according to a power law, since there is always a point r 
where V=~0, W'=/=0. The case W ~ ~ 0, according to (i.I), (2.1) reduces simply to the case 
W = 0. 

We again consider disturbances having the form of normal waves. Their behavior is de- 
scribed by Eq. (I.i). The latter has singularities at points o = 0, i.e., at certain real 
values of ~. Solutions with o = 0 are called singular neutral modes (SNM). We now follow 
[5, 9]. Let: ro be such that ~ (ro) = 0. Then, in the vicinity of ro the solution of (i.i) 
has the form X = AX+ + BX_. Here X = ~/~q; A and B are constants; 

x ~  = ~ / 2 ( ~ o ) ~ •  (r); ~o = v (ro); ~ = (r - -  ro);  

a_~ 49+__ are analytical functions of the form 494- = I ~- +~ -~... in the vicinity of ro. It fol- 
lows from a consideration of the problem with initial data that SNM is the limit of solutions 
with Im m > 0 when Im m + 0. This condition gives the rule for circumvention of the singu- 
larity in the integration of (I.I) and, hence, the branch selection rule. For J(ro) < ~/4, 
near the critical point we obtain 

0 when ~ > 0, 

S ( ~ ) =  __lwhen ~ < 0 ,  U o ~0 , '  

Uo = V/r -]- kW/n t  w h e n  r = ro. 

We distinguish a class of flows in which there are no SNM at internal points of the seg- 
ments [RIR2]I. We consider the Reynolds stresses T = --<uv>, where <uv> is the average over 
z and ~. Since u and v have the form of normal waves, then 2Tr= Re(qv*)exp (2tlm o)~ Whence, 
using (i.i), we can obtain 

= - - -  * - N T - ) I  x 7 --z 7' v 

Thus, ~en Im ~ +0, Tr 2 = const, except for possible discontinuities when o = 0. Using 
the representation for X in the vicinity of the special point ro we find that when J(ro) < i/4 

2~r ~ = yore Im {AB*exp [-- i~(t  Jr  vo)S(~)] }. (2 .2 )  

This expression describes the discontinuity of ~ at the special point. In the considered 
case of flow between cylinders with a monotonic function U = V/r + kW/m we have �9 = 0 when 
r = RI, R2, and in the interval (RIR2) there cannot be more than one special point. Then 
there will be no discontinuity of T at the special point. Whence it follows, in view of 
(2.2), that when Jo < ~/4 either X = X+, or X = X_. When Jo~i/4, we can show, as in [5, 
9], that there are no solutions of the SNM type. We write the conditions for absence of Sh~ 
for J > 0. They will be similar to those in [9]. Hence, we write only one of them. and ob- 
tain the rest by analogy. It is necessary that throughout the flow region the inequalities 
G > 0 ,  G '~ <0 ,  U ' > 0 ,  U " > ~ O ,  ( p ~ + k p r W ' / m ) ' > ~ O  are satisfied. We note the difference 
from [9]. For flows with round streamlines the inequality J > 0 is satisfied simultaneously 
at all k and m. Here there are always k/m for which the absence of SNM cannot be guaranteed. 
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The presented results in the case of m 2 > 1 can be directly extended to flows of the 
tornado type. Thus, the circle theorem is generalized by virtue of the fact that when 
r § 0 the equality q = 0(r 2) is satisfied. For the problem with initial data, except 
m 2 > i, we require that Vo(0) = 0. 
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